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An exact lattice Langevin equation is derived for the ballistic deposition model of surface growth. The
continuum limit of this equation is dominated by the Kardar-Parisi-Zhang �KPZ� equation at all length and
time scales. For a one-dimensional substrate the solution of the exact lattice Langevin equation yields the KPZ
scaling exponents without any extrapolation. For a two-dimensional substrate the scaling exponents are differ-
ent from those found from computer simulations. This discrepancy is discussed in relation to analytic ap-
proaches to the KPZ equation in higher dimensions.
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Surface growth is often described by idealized lattice
models �1,2� in which the complex interactions between in-
dividual atoms or molecules are replaced by simple rules for
the occupancies of lattice sites. If these rules generate heights
whose sum �or integral� is not equal to the material deposited
�e.g., because of evaporation or defect formation�, one
speaks of nonconserved surface growth. Such models are
used to account for a great variety of phenomena, ranging
from sputter deposition to the growth of bacterial colonies
�1,2�. Arguably the most studied continuum theory for non-
conserved surface growth is the Kardar–Parisi–Zhang �KPZ�
equation �3�,

�u

��
= ��2u + ���u�2 + � , �1�

where u�x ,�� is the deviation from the mean height at time �
and position x on a d-dimensional substrate, and ��x ,�� is a
Gaussian noise with zero mean and covariance

���x,����x�,���� = 2D��x − x����� − ��� . �2�

Despite an extensive body of work, even basic properties of
the KPZ equation, such as the scaling exponents for d�1
and the existence of an upper critical dimension, remain con-
troversial �4–16�.

In the absence of a generally accepted analysis of the KPZ
equation for d�1, the theoretical investigation of noncon-
served surface growth has relied largely on kinetic Monte
Carlo �KMC� simulations of lattice models. A prototype
model for nonconserved surface growth is ballistic deposi-
tion �BD�. Originally introduced as a model for vapor depo-
sition �17,18�, BD was among the first surface growth mod-
els to be studied with KMC simulations �19�. However, the
relation between BD and the KPZ equation is still not com-
pletely understood. KMC simulations for d=1 reveal a sys-
tematic discrepancy between the scaling properties of the
KPZ equation and those of BD �20,21� that is alleviated only
if the results of computer simulations are extrapolated to in-
finitely large system sizes �22�. Similar problems have been
reported for other lattice models of nonconserved surface
growth �15,16�. As a result, the universality of results ob-
tained from KMC simulations for d�1 has been called into
question �10,12,14,15�. The absence of a direct relation be-

tween lattice models and the KPZ equation has proven to be
a major obstacle to further progress, not least because the
scaling behavior inferred from KMC simulations can be
masked by crossover.

In this Rapid Communication, we examine the relation
between BD and the KPZ equation from a somewhat differ-
ent perspective. Our discussion is based on the lattice Lange-
vin equation �23,24� for BD. This formulation is statistically
equivalent to KMC simulations and constitutes a computa-
tional alternative to such simulations �24,25�. The regular-
ized expression of the lattice Langevin equation provides
initial conditions for renormalization-group transformations,
which allows a hierarchy of continuum equations to be ob-
tained across all length and time scales. For BD, however,
we find that even the microscopic equation of motion is very
close to the KPZ fixed point. The direct solution of the lattice
Langevin equation for BD is therefore a convenient method
to investigate the scaling properties of the KPZ equation.
This is demonstrated for one- and two-dimensional sub-
strates.

In the classic BD model �17–19�, a particle impinges onto
a randomly chosen lattice site and irreversibly attaches to the
first vertical or lateral nearest-neighbor encountered. For
simplicity all calculations are illustrated for a one-
dimensional substrate, but this is not an inherent limitation of
our method. The updating algorithm for site i with integer
height Hi at time step t+1 can be expressed as

Hi�t + 1� = max�Hi−1�t�,Hi�t� + 1,Hi+1�t�� , �3�

for i=1,2 , . . . ,L, where t is defined as the number of par-
ticles deposited, max�x ,y ,z� yields the maximum of the three
arguments, and the deposition unit has been set equal to
unity. The statistical properties of the BD model are embod-
ied by the Chapman–Kolmogorov equation �26� for the tran-
sition probability Tt+t��H3 �H1� from height configuration H1

to configuration H3 in the time interval t+ t�,

Tt+t��H3�H1� = �
H2

Tt��H3�H2�Tt�H2�H1� , �4�

where t= t2− t1 and t�= t3− t2. Equation �4� is satisfied by all
Markovian lattice models and has the master equation as a
familiar limiting case �26�.
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The Chapman–Kolmogorov equation can be rendered
more analytically tractable by carrying out a Kramers–
Moyal–van Kampen expansion �23,24,26�. We identify the
largeness parameter � governing intrinsic fluctuations �26�
as the reciprocal of the deposition unit �24�. By transforming
to the continuous time and height variables �=�−1t and hi
=�−1Hi, we obtain, for �→	, the lattice Langevin equation
�24�

dhi

d�
= Ki

�1� + 
i, �5�

for i=1,2 , . . . ,L, where Ki
�1� is the first moment of the tran-

sition rate and the 
i are Gaussian noises that have zero
mean and covariances

�
i���
 j����� = Kij
�2���� − �� , �6�

in which Kij
�2� is the second moment of the transition rate. The

transition moments are defined by

Ki
�1��h� =	 drriW�h;r� , �7�

Kij
�2��h� =	 drrirjW�h;r� , �8�

where W�h ;r� is the transition rate from h to h+r, and r is
the array of jump lengths.

A limit theorem due to Kurtz �27–29� mandates that the
Langevin equation �5� is statistically equivalent to the
Chapman–Kolmogorov equation �4� in that the two formula-
tions produce identical results for quantities that characterize
surface morphologies. Solutions of Eq. �5� are related to the
results of KMC simulations through �24�

�F�
Hi�t���� = �F�Hi�0� + 	
0

t

�Ki
�1��h���� + 
i����d���� ,

�9�

where F is a function of the surface profile, such as the
variance or the lateral height correlation. Equation �9� has
been verified for several standard lattice growth models
�24,25�.

For the BD model, Eqs. �7� and �8� yield

Ki
�1� = wi

�1� + �hi−1 − hi�wi
�2� + �hi+1 − hi�wi

�3�,

Kij
�2� = �i,j�wi

�1� + �hi−1 − hi�2wi
�2� + �hi+1 − hi�2wi

�3�� , �10�

where �i,j is the Kronecker delta, wi
�1� is the local transition

rate for increasing hi by one unit, and wi
�2,3� are the transition

rates for increasing hi to hi�1:

wi
�1� = �i,i−1�i,i+1, �11�

wi
�2� = i,i−1�i,i+1 + i,i−1i,i+1i+1,i−1 + 1

2i,i−1i,i+1�i+1,i−1,

�12�

with wi
�3� obtained from wi

�2� by making the replacements
i±1→ i�1. In these expressions, we use the notation x,y

=1−�x,y, �x,y =�x,y +�y,x−1, �x,y =��hx−hy�, and the “discrete
step function” ��n� for integer n is

��n� = �1 if n � 0;

0 if n � − 1.
�13�

The continuation of ���h� to the range −1��h�0 must
be carried out such that the rules of the lattice model are
faithfully generalized from discrete to continuous height
variables �24�. A representation for ���h� consistent with
this criterion is �24,30�

���h� =
1

a
�max��h + a,0� − max��h,0�� , �14�

where a�0. As illustrated in Fig. 1, the rules of BD are
satisfied for continuous deposition events if a is infinitesimal.
Operationally, we can either choose a value of a small
enough to satisfy Eq. �9� to some prescribed tolerance, or
take a→0 after having performed the Kramers–Moyal–van
Kampen expansion.

Equations �10�–�12� and �14� completely define the lattice
Langevin equation �5� for BD. They can be used to derive
appropriate continuum equations for any length and time
scales. Our first step is to introduce the continuous space
variable x and the interpolating height function u�x ,�� such
that

�h�i ± n,�� = �
k=0

	 � �ku

�xk��
x=i

�±a��n�k

k!
, �15�

where a� is the lateral lattice constant. The discrete step func-
tion ���h� is regularized through

���h;�� =
1

2a
	

−	

�h


erf��s + a��� − erf�s���ds , �16�

where ��0 and erf�x� is the error function. We have that
lim�→	���h ;��=���h� for all real values of �h.

The substitution of the Taylor expansions of u and � into
Eqs. �5�–�8� yields the continuum equation for the BD
model. For �→	, the resulting large-order differential equa-
tion retains the atomistic information of the lattice Langevin
equation. Decreasing � suppresses the coefficients of higher-
order derivatives and leads to an effective lower-order differ-
ential equation. For 0���0.1, we find for one- and two-

FIG. 1. Local growth rates at a randomly chosen site i for sev-
eral representative configurations of the BD model using a=0.1 in
Eq. �14�. Height differences between this site and nearest-neighbor
sites are shown at the sides of each configuration.
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dimensional substrates that all terms apart from �2u and
��u�2 have coefficients that render them negligible. In d=1,
the microscopic continuum equation is therefore within the
domain of attraction of the KPZ fixed point, since the higher
order corrections do not modify the universal scaling behav-
ior �3�. A renormalization-group analysis for the KPZ equa-
tion is not available in d=2, but the fact that our regularized
equation is close to this equation provides confidence that
ballistic deposition follows KPZ behavior.

The foregoing considerations demonstrate that, even for
small lattice sizes, the universal behavior of BD is close to
that of the KPZ equation. Hence, the lattice Langevin equa-
tion �5� can be used to investigate the scaling properties of
the KPZ equation without having to make any extrapolation.
For the BD model, the numerical integration of Eq. �5� is
achieved through the algorithm �24�

hi�� + ��� = hi��� + Ki
�1��h��� + Ki

�1��h��Wi��� , �17�

with �Wi���=Wi��+���−Wi���, where ��Wi����=0,
���wi����2�=��, and Ki

�1� is defined in Eq. �10�. We have
used ��=1/10 for d=1 and ��=1/20 for d=2. Such rela-
tively small increments �24� ensure the stability of the above
algorithm for our model, but the numerical integration in Eq.
�17� takes considerably longer than the corresponding KMC
simulations. In some cases, if only the scaling behavior in
the unsaturated regime is of interest, much larger values of
�� can be used �24�.

Surface morphologies obtained from Eq. �17� can be char-
acterized by the standard deviation w�L ,�� of the height pro-
file. For many models of surface growth, including Eq. �1�,
w�L ,�� exhibits dynamic scaling �1,2�,

w�L,�� � ��h2��� − �h����2��1/2 � L�f� �

Lz� , �18�

where �hn�����L−1�ihi
n��� for n=1,2, the scaling function

f�x��x� for x�1 and f�x�→const. for x�1, � is the rough-
ness exponent, z is the dynamic exponent, and �=� /z is the
growth exponent. As in Ref. �16�, we use measurements of
the saturated interface width wsat for various system sizes to
estimate �, from which z can be calculated by z=2−� �3�.

Figure 2�a� shows values for wsat obtained with Eq. �17�
for d=1. We find �=0.495±0.008, in excellent agreement
with the generally accepted value �=1/2 of the KPZ univer-
sality class �3�. This validates our previous suggestion �25�
that, even for small system sizes, the universal behavior of
BD is very well described by the KPZ equation. KMC simu-
lations of BD, on the other hand, generally find smaller val-
ues of � before extrapolation �see Table I�. This apparent
disagreement between the lattice Langevin equation and
KMC simulations comes as a surprise: On basis of Kurtz’s
theorems �27–29� and results for other conserved �24� and
nonconserved �25� lattice models the two formulations are
expected to yield statistically equivalent surface morpholo-
gies in the sense of Eq. �9�. A possible explanation for the
discrepancy is the previous demonstration �20,21� that KMC
simulations of BD couple strongly to correlations in pseudo-
random number generators. For the lattice Langevin equa-
tion, Eq. �10� indicates that the noise can vary at each lattice

site, so this representation does not suffer from such prob-
lems by allowing a greater exploration of configuration
space.

Figure 2�b� shows our results for BD onto two-
dimensional substrates. As for d=1 the continuum limit of
the lattice Langevin equation for d=2 is the KPZ equation
�1� even before any renormalization-group transformations
are carried out. Hence, our results for d=2 directly reflect the
properties of the KPZ equation without any substantial cor-
rections to scaling due to higher-order terms. From the data
displayed in Fig. 2�b�, we obtain the value �=0.362±0.015.
As summarized in Table I extensive KMC simulations car-
ried out recently �15,16� have yielded larger values. How-
ever, simulations �35� that only consider data for which the
probability distribution of local height differences is station-
ary find a value of � close to our result.

Recently there have been some promising analytic at-
tempts �10–14� at characterizing the behavior of the KPZ
equation for d�1. Field-theoretic methods �12� have been
used to calculate the value �=2/5 for d=2. On the other
hand, the mode-coupling approximation �7,14� suggests the
value ��0.38 �14�. The aforementioned KMC simulations
have either rejected both these predictions �16� or only the
value �= 2

5 �15�. However, the values for � obtained from
KMC simulations rely on an extrapolation to infinitely large
system sizes �15,16� and, hence, can only be accurate if the
assumptions made about the corrections to scaling are valid
�15�. Our results confirm the trend observed in recent KMC
simulations �15,16,35� that the predictions of available ana-

FIG. 2. The saturated interface width wsat obtained from Eq.
�17� for BD versus the linear system size L for �a� d=1 and �b� d
=2. The error bars associated with the data points are smaller than
the symbol size. The lines with slope �=0.495 in �a� and �
=0.362 in �b� are optimal fits.
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lytic approaches �12,14� do not yield good agreement with
results obtained from discrete lattice models.

In summary, we have described a multiscale approach to
the analysis of ballistic deposition. Our methodology pro-
vides an analytic augmentation of KMC simulations, but also
allows the direct derivation of essentially exact continuum
equations. Hence, we showed that, even before any coarse-
graining, the scaling properties of the BD model are de-
scribed by the KPZ equation to a very good approximation
for d=1 and d=2. This was confirmed by the demonstration
that for d=1 the lattice Langevin equation for BD yields the
KPZ scaling exponents for small lattice sizes. For d=2 our

approach leads to scaling exponents which are different from
those obtained from recent KMC simulations �15,16� and
analytic arguments �12,14�. The wider significance of our
work stems from the lattice Langevin equation providing a
starting point for a systematic multiscale analysis of lattice
models previously studied only through KMC simulations.
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